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Phase space representation of a spin-$ particle interacting with 
an external electromagnetic field I. General examination 

E N Evtimova 
Department of Physics, Institute for Foreign Students, I l l 1  Sofia, Bulgaria 

Received 23 April 1993, in final form 1 October I993 

Absbact. A method for obtaining phase space representations of the current, the energy- 
momentum and the spin tensors by means of Fourier expansions of wavefunctions is devel- 
oped. In the case of spin-; fields, it leads to a new type of phase space energy-momentum 
tensor in physics: a symmetrized product of the canonical momentum and the charge 
current. The Gordon's decomposition of the current into convective and spin components 
separates four terms in the phase space energy-momentum tensor: a corpuscular one, and 
three others describing the interactions ofthe wavevectors and the external electromagnetic 
field; the wavevectors and the helicity four-vectors; the helicity vectors and the electromag- 
netic field, respectively. The phase space representation of the spin tensor shows an unex- 
pected dependence of this tensor on the metric and the charge current. A possible 
interpretation of the negative values of the phase space current is suggested. Its application 
to the phase space energy-momentum tensor together with the reinterpretation principle in 
special relativity leads to a partition of the spin-: particle into bradyons, luxons, tachyons 
and their anti-particles. 

1. introduction 

The exploration of quantum distribution functions in phase space began with the discov- 
ery of the famous Wigner distribution function [l]. Many other quantum distribution 
functions have since been found for the purposes of different applications ofquantum 
mechanics [2-121. The development of the basic ideas, the classification and the main 
tendencies of the investigations in. the.field of the quantum distribution functions have 
been traced out in many reviews [ 13-24]. 

The introduction of the Wigner quantum distribution function for particles with 
spin4 has been discussed by a number of authors [25-341. These investigations have 
been carried out mainly for systems constituted from many particles. De Groot et a1 
[30] showed that it was possible to represent the energy-momentum tensor of a system 
of non-interacting particles by the second moment of the Wigner distribution function 
F d x ,  k) : 

TPv(x) = constant tr k,k,Fdx,  k) d4k p , v = o ,  1,2, 3 (1.1) s ~: 
where (n) = (2') denotes the position in Minkowski space and k = (k,) is the wavevector 
related to the four-momentump, by k,=p,/lic, p =0, 1,2,3; 6 is the reduced Planck 
constant and c is the speed of light. 
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All the integrations in this work are from -CO to +CO. 

For interpretation purposes in the sequel we accept Recami and Rodrigues [35] 
concept that special relativity is based on the whole proper group of both ortho- and 
anti-orthocronous Lorentz transformations, i.e. that in special relativity, particles as 
well as anti-particles are included. 

One can overcome the problem with the interpretation of the negative values of the 
quantum distribution functions in the following way: any non-positive function F(x, k )  
can be decomposed into two strictly positive functions by the equality [36]: 

F(x, k )  = F + ( x ,  k )  - F-fx ,  k )  . 

P ( x ,  k )  = {IF& k)l +F(x, k ) } / 2 2 0  

(1.2) 
Here the functions 

(1.3) 
are always positive. They are continuous and integrable if F(x,k)  is smooth and 
integrable. 

Following the propositions in [36] and [37] one can interpret p ( x ,  k )  as phase 
space densities of pairs of random physical quantities (q’, q-). This suggestion for 
p ( x ,  k )  could be related to Kriigers idea [38] to consider joint distribution functions 
in the sense of the classical probability theory of a stochastic variable. 

Vigier and Terletsky [39] have already proposed a similar decomposition of the 
probability density of a system into a difference of two positive probability densities 
corresponding to particles with opposite charges. The representation (1.2) appears as 
a generalization of their concept to the case of the phase space distribution functions. 

Using the quantum distribution functions one wants to ‘investigate the description 
of quantum observables by functions on phase space’ [40]. In particular, the aim of 
the present work is to consider the possibility of describing a spin4 particle in an 
external electromagnetic field by means of suitable representations of its characteristic 
observables such as the charge current, the energy-momentum and the spin tensors, 
into the phase space. 

The difference of the presented approach from the ones developed in 125-341 is that 
here the Terletsky-type distribution function [3] is used. Dealing with such a type of a 
distribution function one can introduce it in the invariants of the quantum field theory 
by means of the Fourier transforms of the wavefunctions. This possibility seems more 
natural, both from the mathematical and physical point of view, than the possibility 
applied in [28, 301 where the Wigner-type distribution functions have been brought in 
the invariants employing an integration over a four-dimensional &function. 

The main results of the present work are: (i) The energy-momentum tensor of a 
spin-; particle in phase space is expressed by means of a symmetrized product of the 
canonical momentum and the phase space density of its charge current. (ii) Applying 
Gordon’s decomposition of the charge current into convective and spin parts the energy- 
momentum tensor of the spin; particle separates into four terms: a pure corpuscular 
contribution; a direct interaction between the wave vectors and the external electromag- 
netic fields; an interaction between the wavevectors and the helicity four-vectors and 
an interaction between the external electromagnetic field and the helicity four-vectors. 
(iii) The phase space representation of the spin tensor shows an unexpected dependence 
on the charge current in phase space and the metric tensor. Here the Gordon’s decompo- 
sition of the current separates again the phase space spin tensor in four terms: a 
term connected with the interaction between the wavevectors and the metric; a term 
demonstrating an interaction between the helicity vectors and the metric; a convective 
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term depending on the wavevectors and y-matrices and at last a pure spin term con- 
nected only with y-matrices. 

The organization of the work is as follows: in section 2 the phase space represen- 
tations of the charge current and the canonical energy-momentum tensor of a spin-: 
particle interacting with an external electromagnetic field are obtained. In section 3 the 
phase space representation of the spin tensor is studied. In section 4 a possible interpreta- 
tion of the partition of the phase space current into two strictly positive parts is sug- 
gested. It is shown that the formalism of relativistic representations of the current and 
the energy-momentum tensor into phase space based on the Fourier expansion of the 
wavefunction and an application of the switching procedure [35] in special relativity 
lead to a new possibility of describing the quantum objects as composed of bradyons, 
tachyons, luxons and their antiparticles. The fact that the relativistic generalization of 
the Wigner distribution function in phase space yields a unified description of bradyons 
and tachyons has already been pointed out by Kriiger [38]. 

2. Phase space representation of the current and the energy-momentum tensor 

The interaction between a field Y(x) with spin-; and an external electromagnetic field 
A&), ,U = 0,1,2.3, is described by the Dirac equation [41 J 

[y"(it3, +eA,) -m]Y(x )  = 0 (2.1) 

where y" are the Dirac 4 x 4 matrices, e and m are the elementary charge and the rest 
mass of the electron, a, = a / W .  Here and in what follows we use the system of units 
in which fi=c= 1. 

The charge current of the spin4 field is given by 

P ( x )  =R(x)y'V(x) (2.2) 

where q=Y'+yo, and Y' is the Hermitian conjugate of the spinor Y. 

current: 
In what follows, it will be useful to apply the Gordon's decomposition [42] of the 

~ ( x ) = i e ( Y ( x ) P ~ ( x )  - a , [ ~ f x ) o " ~ ~ x ) ~ ~ / z m .  (2.3) 

The first term in equation (2.3) is the convective, while the second one represents 

In the last formula the double arrow indicates a differentiation to the right minus 
the spin contribution to the current [29]. 

a differentiation to the left and 

d'" = i( y'yv- y"y'()/2 (2.4) 

is the spin antisymmetric tensor. 

of the spinor field [43] : 

P ~ ( X )  = - { ~ ' y ~ ( i i 7 " - e A " ) Y + q y v ( i B ~  - eA~)Y-~(it3'-eA")y"Y 

Here we shall exploit the symmetric form of the canonical energy-momentum tensor 

- P(ia'- e ~ ' ) y ' Y } / 4  (2.5) 

where 8 and a'denote the derivatives that act to the right and to the left, respectively. 
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In order to obtain the phase space representations of (2.2), (2.3) and (2.5) we need . the Fourier expansion of the wavefunction 

U(x) = ( 2 ~ ) - ~  @(k) e*x d4k (2.6) 

where Q ( k )  is the Fourier transform of Y ( x )  and d4k is the volumeelement in the space 
of the wavevectors. 

Due to the external field in (2. I )  it is easy to see that the wavevectors k, participating 
in (2.6) do not lie on the mass hyperboloid, i.e. one has that (k, +eA,,)(K +eA") =m2. 
The fact that in such a case it is not necessary to impose any mass-shell restriction on 
the four-vectors kn was especially underlined in [29] and [33]. 

Applying equation (2.6) to the wavefunctions in the surrent (2.2) and the energy- 
momentum tensor (2.5) and omitting the integration we obtain the following phase 
space densities : 

s 

P(x, k )  = e ( 2 ~ ) - ~ q ( x ) y ~ Q ( k )  eky=e(2n)-4'?(k)y"I(x) e-*' (2.7) 

and 

T'"(x, k ) =  (2~)-~{%'(x)y"(k"+eA")Q(k)  e'"+ '?(x)y"(k'+eA')@(k) eiKr 

+ 6(k)(k' + eA') y"Y(x)  ediky+ 6(k)(kv + eA") y"Y(x) e-'"}/4. (2.8) 

Comparison of (2.7) and (2.8) shows that 

~ ' " ( x ,  k)=(2e)-'{(k"+eA")~'(x, k ) + ( k " + e ~ " ) P ( x , k ) ) .  (2.9) 

Hence, one can see that the phase space energy-momentum tensor appears as a 

E'' =K +eA' (2.10) 

Using equation (2.3) we can obtain another form for the phase space representation 

symmetrized product of the phase space current (2.7) and the canonical momentum 

of some kind of object that will be specified later. 

of the current 

J"(x ,k )=-2eFr(x ,k )K-e (2~) -4  

{6(k)kiuan'Y(x) e-ib - '?(x)kiuu@(k) e'k"}/2m (2.11) 

Fr(x, k)  =Re['?(x)Q(k) eiky] (2.12) 

where 

is the scalar Terletsky distribution function corresponding to %'(x)Y(x). 
From (2.1 1) it is obvious that the convective part of the phase space current depends 

on the wavevectors k, while the spin part depends on the helicity four-vectors knoiu. 
The above observation shows that in the case of a field with spin-: the scalar 

distribution function (2.12) is not sufficient to describe the behaviour of the quantum 
object in phase space. The currents (2.7) or (2.1 1) prove to be more appropriate for 
the purpose. 



Phase space representation of a spin-f particle 997 

Now, inserting (2.11) in (2.9) we obtain the followingpartition of the,phase space 
energy-momentum tensor: 

T""(x, k )  = TE(x,  k )  + Tz$(x,  k)  + Tf:(x, k )  + T T ( x ,  k ) .  (2.13) 

The first term in this equation possesses the structure of a pure matter tensor [44], 

(2.14) 

Hence, we have managed to separate from the total phase space energy-momentum 

The second term in (2.13) shows that the external electromagnetic field acts directly 

(2.15) 

The third term in (2.13) describes the contribution from the interaction between the 

however, with density being the scalar Terletsky distribution function (2.12), i.e, 

TK(n, k )  = -Fr(x, k)Kk'/m.  

density the part that manifests the corpuscularity of the considered object. 

on the wavevectors: 

T$;(x, k )  = -eFr(x, k )  (A"k"+A"k")/Zm. 

helicity and the wavevectors: 

Ti&, k) =(2~)-~{'U(k'k~c~'"+k"k~o'")a? e*" 

- &(kpkAo'"" + kvknu'u)Y e-"X}/4m. (2.16) 

The last term is connected with the interaction between the extemal electromagnetic 
field and the helicity vectors: 

T$k(x, k )  =e(27~)-~{q(A"k~c~'" +A"kAoa")a? e&' 
. ,  

-&(,4"kacTw + A " k 2 d P ) Y  } / 4 m .  (2.17) 

3. Spin tensor in phase space representation 

According to [30] the spin tensor that is conserved when the interaction is absent has 
the following form , 

S P " A ( ~ ) =  'U(x){o"" - (f'%'- y"P)/2hz)y'Y(x)/4+ h . ~ .  (3.1) 

y"y'+ y'y"=2g"' (3.2) 

Applying the well known relation between y-matrices and the metric tensor 

the spin tensor (3.1) can be transformed into 

s""' (n) = i { P ( x ) g v L  - ~"(x)g"'- 'T(y'y'y"- y ' y ' f ' ) ~ / 2  

- F ( y a a v -  y'a"(yAY/2m}/(4e)+ h.c. (3.3) 
Setting the expansion (2.6) for Y ( x )  in (3.3), omitting the integration and using the 

representation (2.11) for the current, one obtains that the phase spin tensor divides 
also into four terms 

S""'(x, k)=S&"(x,k) + ~ ~ ' ( x , k ) + S ~ y Y ' ( x ; k ) + S ~ " ' ( x ,  k) .  (3.4) 
Here, the first term describes the influence of the metric and the wavevectors on the 

spin of the particle and depends on the scalar Terletsky distribution function: 

S&""(x, k )  = - F ~ x ,  k)(Kgv'-k"g"')/2m. (3.5) 



998 E N  Eutimoua 

The second term demonstrates the contribution to the spin from the interaction 
between the helicity vectors and the metric: 

s:;yx, k )  = -(2n)-"'Y(k,~' 'g '"-k,a'~~' .)~ err  

+ 6(k,u'Kg"A-k,uzvfa)'€' eUik.'}/8m +h.c. (3.6) 
The third term is the convective part of the spin since it depends on the wavevectors 

in the following way: 

s$;'(x, k)=-i(z~)-~{P(y"'y'- yVkgya)@ e'" 

+ 6 ( y D k v y A -  y"V yA)Y e-ikc}/8m+h.c. (3.7) 

St;"(x, k )  =-i(27r)-'{'?(yPy'fl - y"y'y')@ ek'}/8 + h.c. (3.8) 

The fourth term shows the pure contribution to the spin from the y-matrices: 

4. Discussion 

Exploiting the relativistic quantum field invariants one assumes that the 'fundamental 
particles are regarded as extended objects' [48], i.e. as objects with internal structure. 

We next attempt to specify the possible internal constituents of a spin-; particle. 
It is necessary here to define the terminology that will be used. If the current, the 

energy-momentum tensor and the spin tensor are defined in position or in momentum 
space separately, they describe certain quantum objects. When the same physical quanti- 
ties are determined in phase space by a distribution function they will describe some 
kind of hypothetical sub-quantum objects. Some of the peculiar properties of these sub- 
quantum objects will be discussed below. 

In section 2 we have shown that the phase space energy-momentum tensor can be 
cast into a symmetrized product of the canonical momentum and the phase space 
current (2.9). This new and specific structure of the energy-momentum tensor turns out 
to be very useful for interpretation. 

Because of the fact that the current J(x, k) is not positive everywhere, using the 
proposal (1.2), one can introduce two strictly positive current densities in the following 
way: 

fi(x,k)={IY(x, k)l * t " ( x , k ) / 2 > 0 .  (4.1) 

J'(x, k )  = J k ( x ,  k )  -J'-(x,  k). (4.2) 

It is clear that 

Hence, the energy-momentum tensor in phase space can also be separated into two 
parts: 

T$"(x, k)=(2e) - ' { (W+eAp)S:(x ,  k)+(k"+eA')J':(x, k ) } .  (4.3) 
Modifying the considerations of PavSiE and Recami [45] we accept their terminology 

and associate 'constituents' with Z ( x ,  k)  and TY'(x, k) and 'anti-constituents' with 
L (x, k)  and T Y ( x ,  k) .  As has been pointed out in 1461 the availability of a current in 
phase space corresponds to the presence of a flux density in that space. Hence, the 
representations (4.1)-(4.3) make it possible to assume the existence of at least two 
fluxes of 'constituents' and 'anti-constituents' which form the internal ingredients of a 
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spin4 particle in the hypothetical sub-quantum level. By subquantum level we mean 
here the level that precedes the quantum one, i.e. it is connected with the internal 
structure of any elementary quantum object. 

One of the peculiarities of the above introduced sub-quantum entities consists in 
the fact that the well known physical quantities are constructed as differences of the 
‘constituents’ and ‘anti-constituents’, e.g. 

T””(x, k)= T$”(x, k )  - T”_”’x, k). (4.4) 

Thus one can say that each ‘anti-constituent’ (or a group of ‘anti-constituents’ annihi- 
lates or nullifies (figuratively said ‘eats up’) the action o f ~ a  corresponding ‘constituent’ 
[47]. The remaining uncompensated ‘constituents’ determine the observed energy- 
momentum of the quantum object 

P” = j ( T Y ( x ,  k )  - T’?(x, k ) )  d4k d3x. ~ (4.5) 

Next, a further differentiation of the suh-quantum entities Will illustrate their strange 
properties. As no mass-shell restriction is imposed on the wavevectors taking part in 
the Fourier expansion (2.6) it is possible to find time-like objects (k“k,> 0)-bradyons; 
light-like objects (k“k, <O)-luxons and space-like objects (k‘kk,<O)-tachyons in the 
‘constituents’/’anti-constituents’. For details concerning this classification see [48]. 

Since the Fourier decomposition (2.6) contains wavevectors with positive energy 
(k.=E/hc>O) as well as such with negative energy (ko<O) as we shall apply the 
reinlerpretalion principle or switching procedure in special relativity [48-501. 

It is a well known fact that the spinor current (2.2) is cn-invariant 1511. Hence the 
operation of reflecting spacetime (m) is equivalent to a charge conjugation (C) of this 
current. The latter inverts the sign of the charge ( jo -  -J0)  and the former reverses the 
signs of the space and time coordinates xp-+ - x p ,  p=O, 1,2,3. However, the space 
time reversal applied to the Fourier transform (2.6) is equivalent to a charge in the 
signs of the wavevectors: xv-+-Xok,,+-k, [50]. Hence, it is clear that ‘Negative 
energy objects travelling forward in time do not exist; any negative energy object P 
travelling backwards in time can and must be described as its anti-object P going the 
opposite way in space (but endowed with positive energy and motion forward in time)’ 

From the above considerations one concludes that the ‘constituents’fanti-constit- 
~501. 

uents’ contain also anti-hradyons, anti-luxons and anti-tachyons. 

5. Conclusions 

The possibility of transforming the quantum field invariants into quantities’in phase 
space is interpreted as an opportunity for introducing certain kinds of hypothetical sub- 
quantum entities from which the quantum objects are constituted. Otherwise, we sup- 
pose that the above introduced phase space description is related to the internal structure 
of the quantum particles. 

As has been pointed out in [52] ‘in quantum mechanics obsewables are positive- 
operator-valued measures’. In order to comply with this positiveness requirement we 
have separated the phase space densities introduced in section 2 into two strictly positive 
non-equal representatives (see e.g., (1.2), (4.2) and (4.4)). They have been associated 
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with entities called ‘constituents and ‘anti-constituents’. The novelty is that all typically 
quantum observables (like (4.5)) have to be constructed as certain differences of the 
strictly positive phase space quantities. For example, in the case considered, we have 
represented a spin-6 particle as composed of the difference of two non-equivalent fluxes 
that contain bradyons, luxons, tachyons and their anti-particles. 

The conclusion that in the case of a spinor field, unlike the case when one deals 
with a scalar field [30,36,53, 541, the scalar distribution function (2.12) is not sufficient 
to describe the effects of the field, is in agreement with the latest investigations of the 
matter 1321. It is necessary to consider the components of the four-vector of the charge 
current (2.7) or (2.11) as distribution functions in the spinor case, or, as was pointed 
out in [28-301, a 4 x 4 matrix as a distribution function for mixed states in the phase 
space. 

Finally, we would like to underline that the proposed description is a hypothetical 
one and is connected mainly with the continuous character of the quantum objects. 
Their corpuscularity is manifested only by the presence of the pure matter tensor (2.14) 
in the total phase space energy-momentum tensor (2.13). 
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